jueves, 19 de marzo de 2020

QUÍMICA GRADO 10º


HISTORIA DE LA TABLA PERIÓDICA

Los seres humanos siempre hemos estado tentados a encontrar una explicación a la complejidad de la materia que nos rodea. Al principio se pensaba que los elementos de toda materia se resumían al agua, tierra, fuego y aire. Sin embargo, al cabo del tiempo y gracias a la mejora de las técnicas de experimentación física y química, nos dimos cuenta de que la materia es en realidad más compleja de lo que parece. Los químicos del siglo XIX encontraron entonces la necesidad de ordenar los nuevos elementos descubiertos. La primera manera, la más natural, fue la de clasificarlos por masas atómicas, pero esta clasificación no reflejaba las diferencias y similitudes entre los elementos. Muchas más clasificaciones fueron adoptadas antes de llegar a la tabla periódica que es utilizada en nuestros días


CRONOLOGIA DE LAS DIFERENTES CLASIFICACIONES DE LOS ELEMENTOS QUIMICOS 
  • PRIMERA CLASIFICACION DE LOS ELEMENTOS QUIMICOS 

La primera clasificación de elementos conocida, fue propuesta por Antoine Lavoisier (1743-1794), quien propuso que los elementos se clasificaran en metales, no metales y metaloides o metales de transición. Aunque muy práctico y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias en las propiedades físicas como químicas.


Resultado de imagen para metales no metales y semimetales ejemplos
  • TRIADAS DE DOBEREINER

El químico Johan Döbereiner alcanzó a elaborar un informe que mostraba una relación entre la masa atómica de ciertos elementos y sus propiedades en 1817. Él destaca la existencia de similitudes entre elementos agrupados en tríos que él denomina “tríadas”. La tríada del cloro, del bromo y del yodo es un ejemplo. Pone en evidencia que la masa de uno de los tres elementos de la triada es intermedia entre la de los otros dos. En 1850 pudimos contar con unas 20 tríadas para llegar a una primera clasificación coherente.

Resultado de imagen para TRIADAS DE DOBEREINER

  • OCTAVOS DE NEWLANDS

En 1864, el químico inglés John Alexander Reina Newlands comunicó al Real Colegio de Química su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamados gases nobles no habían sido aún descubiertos.

Esta ley mostraba una cierta ordenación de los elementos en familias (grupos), con propiedades muy parecidas entre sí y en Periodos, formados por ocho elementos cuyas propiedades iban variando progresivamente. El nombre de octavas se basa en la intención de Newlands de relacionar estas propiedades con la que existe en la escala de las notas musicales, por lo que dio a su descubrimiento el nombre de ley de las octavas.

Como a partir del calcio dejaba de cumplirse esta regla, esta ordenación no fue apreciada por la comunidad científica que lo menospreció y ridiculizó, hasta que 23 años más tarde fue reconocido por la Royal Society, que concedió a Newlands su más alta condecoración, la medalla Davy.


Resultado de imagen para LEY DE OCTAVAS



  • TABLA PERIODICA DE MENDELEIEVE

En 1869, Mendeleyev publicó su tabla periódica. Había ordenado los elementos siguiendo su peso atómico, como lo hizo Newlands antes que él, pero tuvo tres ideas geniales: no mantuvo fijo el periodo de repetición de propiedades, sino que lo amplió conforme aumentaba el peso atómico (igual que se ampliaba la anchura de la gráfica de Meyer). Invirtió el orden de algunos elementos para que cuadraran sus propiedades con las de los elementos adyacentes, y dejó huecos, indicando que correspondían a elementos aún no descubiertos.

En tres de los huecos, predijo las propiedades de los elementos que habrían de descubrirse (denominándolos ekaboro, ekaaluminio y ekasilicio), cuando años más tarde se descubrieron el escandio, el galio y el germanio, cuyas propiedades se correspondían con las predichas por Mendeleyev, y se descubrió un nuevo grupo de elementos (los gases nobles) que encontró acomodo en la tabla de Mendeleyev, se puso de manifiesto no sólo la veracidad de la ley periódica, sino la importancia y utilidad de la tabla periódica. La tabla periódica era útil y permitía predecir las propiedades de los elementos, pero no seguía el orden de los pesos atómicos.

Hasta los comienzos de este siglo, cuando físicos como Rutherford, Borh y Heisemberg pusieron de manifiesto la estructura interna del átomo, no se comprendió la naturaleza del orden periódico. Pero eso, eso es otra historia...




  • TABLA PERIODICA MODERNA


La tabla periódica de Mendeléyev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las "tierras raras" y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio–yodo, argón–potasio y cobalto–níquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes.

Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867–1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raíz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo.


La explicación que aceptamos actualmente de la "ley periódica" descubierta por los químicos de mediados del siglo pasado surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX. En el primer tercio del siglo XX se construyó la mecánica cuántica. Gracias a estas investigaciones y a los desarrollos posteriores, hoy se acepta que la ordenación de los elementos en el sistema periódico está relacionada con la estructura electrónica de los átomos de los diversos elementos, a partir de la cual se pueden predecir sus diferentes propiedades químicas

Resultado de imagen para TABLA PERIODICA MODERNA



VIDEO COMPLEMENTARIO




PROPIEDADES PERIÓDICAS

Son propiedades que presentan los átomos de un elemento y que varían en la Tabla Periódica siguiendo la periodicidad de los grupos y periodos de ésta. Por la posición de un elemento podemos predecir qué valores tendrán  dichas propiedades así como a través de ellas, el comportamiento químico del elemento en cuestión. Tal y como hemos dicho, vamos a encontrar una periodicidad de esas propiedades en la tabla. Esto supone por ejemplo, que la variación de una de ellas en los grupos o periodos  va a responder a una regla general. El conocer estas reglas de variación nos va a permitir conocer el comportamiento, desde un punto de vista químico, de un  elemento, ya que dicho comportamiento, depende en gran manera de sus propiedades periódicas


  • RADIO ATÓMICO


Es la distancia que existe entre el núcleo y la capa de valencia (la más externa). El radio atómico dependerá del tipo de unión que presenten los átomos.

radio_atomico_2.jpg (398×298)

  • En un grupoel radio atómico aumenta al descender, pues hay más capas de electrones.
  • En un período: el radio atómico aumenta hacia la izquierda pues hay las mismas capas pero menos protones para atraer a los electrones.


radio_atomico.jpg (462×236)


  • Energía de ionización (EI) 


Es la energía necesaria para separar totalmente el electrón más externo del átomo en estado gaseoso. Como resultado, se origina un ion gaseoso con una carga positiva (catión).
 Una manera de expresar esta información es la siguiente:

 X(g) + energía → X+ (g) + 1e–

Si el electrón está débilmente unido, la energía de ionización es baja; si el electrón está fuertemente unido, la energía de ionización es alta.

  •  En un grupo: La energía de ionización disminuye al aumentar el número atómico, ya que los electrones externos están cada vez más alejados del núcleo y por lo tanto cada vez menos atraídos por el núcleo (será más fácil extraerlos).
  • En un período: La energía de ionización aumenta al aumentar el número atómico, ya que para un mismo periodo los electrones se colocan en la misma capa de valencia y al ir aumentando la carga positiva del núcleo, la atracción de ésta sobre los electrones será cada vez mayor.


energia_ionizacion.jpg (462×236)

  • Afinidad electónica (AE)


Es la energía libera a cuando un átomo en estado gaseoso capta un electrón, formándose un ión gaseoso negativo. El átomo se convertirá en un anión.
Una representación general de este proceso, en términos energéticos, es la siguiente:

X(g) + 1e– → X–(g) + energía

Está comprobado que a mayor electronegatividad, mayor es la tendencia que tiene el átomo para aceptar un electrón.

  • En un grupo: La Afinidad electónica disminuye de arriba hacia abajo a medida que aumenta el número atómico (Z).
  • En un período: La Afinidad electónica aumenta a medida que aumenta el número atómico (Z).


afinidad_electronica.jpg (464×244)

  • Electronegatividad (EN)


Es la capacidad que tiene uno de sus átomos de atraer, en un enlace químico covalente, electrones compartidos con otros átomos.
La electronegatividad se determina en la escala de Pauling. Al flúor (F), el elemento más electronegativo, se le asigna el valor 4,0; al Francio (Fr), el menos electronegativo, le corresponde el 0,7.

  • En un grupo: La electronegatividad disminuye al descender, pues el núcleo estará más alejado y atraerá menos a un electrón.
  • En un período: La electronegatividad aumenta hacia la derecha pues hay las mismas capas pero más protones para atraer a los electrones y lo hacen con mayor facilidad.


electronegatividad.jpg (464×244)


  •  Carácter metálico

Un elemento se considera metal, desde un punto de vista electrónico, cuando cede fácilmente electrones y no tiene tendencia a ganarlos.

  • En un grupo: El carácter metálico aumenta al descender, pues el electrón que pierde está más alejado y menos atraído por el núcleo.
  • En un período: El carácter metálico aumenta hacia la izquierda pues hay las mismas capas pero menos protones para atraer a los electrones y se pueden perder con mayor facilidad.
Caracter Metálico - PÉRIODICITÉ CHIMIQUE




No hay comentarios.:

Publicar un comentario

FÍSICA GRADO 7º  LA CARGA  ELÉCTRICA La materia está constituida por unas partículas elementales llamadas...