jueves, 19 de marzo de 2020

BIOLOGÍA GRADO 9º


REPLICACION DEL ADN

Una vez que se comprobó que el ADN era el material hereditario y se descifró su estructura, lo que quedaba era determinar como el ADN copiaba su información y como la misma se expresaba en el fenotipo. Matthew Meselson y Franklin W. Stahl diseñaron el experimento para determinar el método de la replicación del ADN. Tres modelos de replicación era plausibles.


1.  Replicación conservativa durante la cual se produciría un ADN completamente nuevo durante la replicación.


2. En la replicación semiconservativa se originan dos moléculas de ADN, cada una de ellas compuesta de una hebra de el ADN original y de una hebra complementaria nueva. En otras palabras el ADN se forma de una hebra vieja y otra nueva. Es decir            que las hebras existentes sirven de molde complementario a las nuevas.

     

3. La replicación dispersiva implicaría la ruptura de las hebras de origen durante la replicación que, de alguna manera se reordenarían en una molécula con una mezcla de fragmentos nuevos y viejos en cada hebra de ADN.




El experimento de Meselson-Stahl consiste en cultivar la bacteria Escherichia coli en un medio que contenga nitrógeno pesado (15Nitrógeno que es mas pesado que el isótopo mas común: el 14Nitrógeno ). La primera generación de bacterias se hizo crecer en un medio que únicamente contenía 15Nitrógeno como fuente de N. La bacteria se transfirió luego a un medio con 14N. Watson y Crick habían pronosticado que la replicación del ADN era semiconservativa, de ser así el ADN extraído de las bacterias luego de cultivarlas por una generación en 14N tendría un peso intermedio entre el ADN extraído del medio con 15N y el del extraído de medio con 14N y así fue.
.
Los detalles del experimento que incluye un proceso de ultracentrifugación en cloruro de Cesio (CeCl2) puede encontrarse en el Curtis.

La replicación del ADN, que ocurre una sola vez en cada generación celular, necesita de muchos "ladrillos", enzimas, y una gran cantidad de energía en forma de ATP (recuerde que luego de la fase S del ciclo celular las células pasan a una fase G a fin de, entre otras cosas, recuperar energía para la siguiente fase de la división celular). La replicación del ADN en el ser humano a una velocidad de 50 nucleótidos por segundo, en procariotas a 500/segundo. Los nucleótidos tienen que se armados y estar disponibles en el núcleo conjuntamente con la energía para unirlos.

La iniciación de la replicación siempre acontece en un cierto grupo de nucleótidos, el origen de la replicación, requiere entre otras de las enzimas helicasas para romper los puentes hidrógeno y las topoisomerasas para aliviar la tensión y de las proteínas de unión a cadena simple para mantener separadas las cadenas abiertas.




Una vez que se abre la molécula, se forma una área conocida como "burbuja de replicación" en ella se encuentran las "horquillas de replicación" . Por acción de la la ADN polimerasa los nuevos nucleótidos entran en la horquilla y se enlazan con el nucleótido correspondiente de la cadena de origen (A con T, C con G). Los procariotas abren una sola burbuja de replicación, mientras que los eucariotas múltiples. El ADN se replica en toda su longitud por confluencia de las "burbujas".

Dado que las cadenas del ADN son antiparalelas, y que la replicación procede solo  en la dirección 5' to 3' en ambas cadenas, numerosos experimentos mostraron que, una cadena formará una copia continua, mientras que en la otra se formarán una serie de fragmentos cortos conocidos como fragmentos de Okazaki . La cadena que se sintetiza de manera continua se conoce como cadena adelantada y, la que se sintetiza en fragmentos, cadena atrasada.


Para que trabaje la ADN polimerasa es necesario la presencia, en el inicio de cada nuevo fragmento, de pequeñas unidades de ARN conocidas como cebadores, a posteriori, cuando la polimerasa toca el extremo 5' de un cebador, se activan otras enzimas, que remueven los fragmentos de ARN, colocan nucleótidos de ADN en su lugar y, una ADN ligasa los une a la cadena en crecimiento.



Tomado de: http://www.biologia.edu.ar/adn/adntema1.htm

VÍDEO COMPLEMENTARIO






TRANSCRIPCIÓN DEL ADN

La transcripción es el primer paso de la expresión génica, el proceso por el cual la información de un gen se utiliza para generar un producto funcional, como una proteína. El objetivo de la transcripción es producir una copia de ARN de la secuencia de ADN de un gen. En el caso de los genes codificantes, la copia de ARN, o transcrito, contiene la información necesaria para generar un polipéptido (una proteína o la subunidad de una proteína). Los transcritos eucariontes necesitan someterse a algunos pasos de procesamiento antes de traducirse en proteínas.


En la transcripción, una región de ADN se abre. Una sola cadena, la cadena molde, sirve como plantilla para la síntesis de un transcrito complementario de ARN. La otra cadena, la cadena codificante, es idéntica al transcrito de ARN en secuencia, excepto que el ARN tiene bases de uracilo (U) en lugar de bases de timina (T).

Ejemplo:

Cadena codificante: 5'-ATGATCTCGTAA-3'
Cadena molde: 3'-TACTAGAGCATT-5'
Transcrito de ARN: 5'-AUGAUCUCGUAA-3'

En el caso de un gen codificante, el transcrito de ARN contiene la información necesaria para sintetizar un polipéptido (proteína o proteína subunidad) con una secuencia de aminoácidos particular. En este caso:

Transcrito de ARN (que actúa como ARN mensajero): 5'-AUGAUCUCGUAA-3'
Polipéptido: Met-Ile-Ser-ALTO

  • La ARN polimerasa

La principal enzima que participa en la transcripción es la ARN polimerasa, la cual utiliza un molde de ADN de cadena sencilla para sintetizar una cadena complementaria de ARN. Específicamente, la ARN polimerasa produce una cadena de ARN en dirección de 5' a 3', al agregar cada nuevo nucleótido al extremo 3' de la cadena.

La ARN polimerasa sintetiza una cadena de ARN complementaria a la cadena molde de ADN. Esta enzima sintetiza la cadena de ARN en dirección 5' a 3', mientras que lee la cadena molde de ADN en dirección 3' a 5'. La cadena molde de ADN y la cadena de ARN son antiparalelas.

Transcrito de ARN: 5'-UGGUAGU...-3' (los puntos indican que todavía se están agregando nucleótidos en el extremo 3')
Molde de ADN: 3'-ACCATCAGTC-5'

Las etapas de la transcripción

La transcripción de un gen ocurre en tres etapas: iniciación, elongación y terminación. Aquí veremos brevemente cómo ocurren estas etapas en bacterias. Puedes aprender más sobre los detalles de cada etapa (y sobre las diferencias que hay respecto a la transcripción eucarionte) en el artículo sobre etapas de la transcripción.

    • Iniciación. La ARN polimerasa se une a una secuencia de ADN llamada promotor, que se encuentra al inicio de un gen. Cada gen (o grupo de genes co-transcritos en bacterias) tiene su propio promotor. Una vez unida, la ARN polimerasa separa las cadenas de ADN para proporcionar el molde de cadena sencilla necesario para la transcripción.
La región promotora se encuentra antes de (y sobrelapa ligeramente con) la región transcrita cuya transcripción señala. Esta región contiene sitios de reconocimiento para que la ARN polimerasa o sus proteínas auxiliares se unan. El ADN se abre en la región promotora de forma que la ARN polimerasa pueda inciar la transcripción.

    • Elongación. Una cadena de ADN, la cadena molde, actúa como plantilla para la ARN polimerasa. Al "leer" este molde, una base a la vez, la polimerasa produce una molécula de ARN a partir de nucleótidos complementarios y forma una cadena que crece de 5' a 3'. El transcrito de ARN tiene la misma información que la cadena de ADN contraria a la molde (codificante) en el gen, pero contiene la base uracilo (U) en lugar de timina (T).



La ARN polimerasa sintetiza un transcrito de ARN complementario a la cadena molde de ADN en dirección 5' a 3'. La enzima avanza a lo largo de la cadena molde en dirección 3' a 5' y al avanzar abre la doble hélice del ADN. El ARN sintetizado solo se mantiene unido a la cadena molde por un corto tiempo y luego sale de la polimerasa como una cadena colgante, para permitir que el ADN se vuelva a cerrar y formar una doble hélice.

En este ejemplo, las secuencias de la cadena codificante, la cadena molde y el transcrito de ARN son:

Cadena codificante: 5' - ATGATCTCGTAA-3'

Cadena molde: 3'-TACTAGAGCATT-5'

ARN: 5'-AUGAUC...-3' (los puntos indican que todavía se están agregando nucleótidos en el extremo 3')

    • Terminación. Las secuencias llamadas terminadores indican que se ha completado el transcrito de ARN. Una vez transcritas, estas secuencias provocan que el transcrito sea liberado de la ARN polimerasa. A continuación se ejemplifica un mecanismo de terminación en el que ocurre la formación de un tallo-asa en el ARN
El ADN terminador codifica una región de ARN que forma una estructura de tallo-asa seguida de una cadena de nucleótidos U. La estructura tallo-asa del transcrito provoca que la ARN polimerasa se detenga. Los nucleótidos U que están después del tallo-asa forman enlaces débiles con los nucleótidos de A en el molde de ADN, lo que permite que el transcrito se separe del molde y la transcripción termine.


  • MODIFICACIONES AL ARN EUCARIONTE 


En bacterias, los transcritos de ARN pueden actuar como ARN mensajeros (ARNm) inmediatamente. En eucariontes, el transcrito de un gen codificante se llama pre-ARNm y debe experimentar un procesamiento adicional antes de que pueda dirigir la traducción.

Los pre-ARNm eucariontes deben tener sus extremos modificados por la adición de un cap 5' (al inicio) y una cola de poli-A 3' (al final).


Muchos pre-ARNm eucariontes sufren empalme. En este proceso, partes del pre-ARNm (llamadas intrones) se cortan y se eliminan, y las piezas restantes (llamadas exones) se vuelven a unir.

Imagen superior: diagrama de un pre-ARNm con un cap 5' y una cola de poli-A 3'. El cap 5' se encuentra en el extremo 5' del pre-ARNm y es un nucleótido de G modificado. La cola de poli-A se encuentra en el extremo 3' del pre-ARNm y se compone de una larga cadena de nucleótidos de A (de los cuales solo se muestran unos cuantos).

El pre-ARNm contiene tanto exones como intrones. A lo largo de la cadena del ARNm hay un patrón alternante de exones e intrones: exón 1 - intrón 1 - exón 2 - intrón 2 - exón 3. Cada uno se compone de un segmento de nucleótidos de ARN.

Durante el empalme, se eliminan los intrones del pre-ARNm y los exones se vuelven a unir para formar un ARNm maduro.

Parte inferior de la imagen: un ARNm maduro que no contiene las secuencias de los intrones (solamente exón 1 - exón 2 - exón 3).

Las modificaciones en los extremos aumentan la estabilidad del ARNm, mientras que el empalme otorga al ARNm su secuencia correcta (si no se eliminan los intrones, se traducirán junto con los exones y producirán un polipéptido "sin sentido").

Tomado de: https://es.khanacademy.org/science/biology/gene-expression-central-dogma/transcription-of-dna-into-rna/a/overview-of-transcription


VÍDEO COMPLEMENTARIO




TRADUCCIÓN

¿Cómo se "lee" un ARNm para formar un polipéptido? Dos tipos de molécula con papeles clave en la traducción son los ARNt y los ribosomas.

  • ARNs de transferencia (ARNt)
Los ARN de transferencia o ARNt, son "puentes" moleculares que conectan los codones del ARNm con los aminoácidos para los que codifican. Un extremo de cada ARNt tiene una secuencia de tres nucleótidos llamada anticodón, que se puede unir a un codón específico del ARNm. El otro extremo de ARNt lleva el aminoácido que especifica el codón.


Hay muchos tipos de ARNt. Cada tipo lee uno o unos pocos codones y lleva el aminoácido correcto que corresponde a esos codones.

Los ribosomas están compuestos de una subunidad grande y una pequeña, y tienen tres sitios en los cuales se puede unir el ARNt con el ARNm (los sitios A, P y E). Cada ARNt transporta un aminoácido específico y se une a un codón que es complementario a su anticodón.

  • Ribosomas

Los ribosomas son las estructuras donde se construyen los polipéptidos (proteínas). Se componen de proteínas y ARN (ARN ribosomal o ARNr). Cada ribosoma tiene dos subunidades, una grande y una pequeña, que se reúnen alrededor de un ARNm, algo parecido a las dos mitades de un pan para hamburguesa que se reúnen alrededor de la torta de carne.

El ribosoma proporciona un conjunto de espacios útiles o huecos donde los ARNt pueden encontrar sus codones correspondientes en la plantilla del ARNm y entregar sus aminoácidos. Estos huecos se llaman los sitios A, P y E. Pero además el ribosoma actúa como una enzima que cataliza la reacción química que une los aminoácidos para formar una cadena.

Resultado de imagen para ribosoma partes


ETAPAS DE LA TRADUCCIÓN 

Tus células están fabricando proteínas cada segundo, y cada una de ellas debe contener el conjunto correcto de aminoácidos unidos justo en el orden debido. Esto puede sonar como una tarea difícil, pero por suerte, tus células (junto con las de los demás animales, plantes y bacterias) están capacitados para ella.

Para ver cómo las células hacen las proteínas, vamos a dividir la traducción en tres etapas: iniciación (el comienzo), elongación (el agregar a la cadena proteica) y terminación (la finalización).

  • El comienzo: la iniciación
 En la iniciación, el ribosoma se ensambla alrededor del ARNm que se leerá y el primer ARNt (que lleva el aminoácido metionina y que corresponde al codón de iniciación AUG). Este conjunto, conocido como complejo de iniciación, se necesita para que comience la traducción.

  • La extensión de la cadena: elongación
 La elongación es la etapa donde la cadena de aminoácidos se extiende. En la elongacón, el ARNm se lee un codón a la vez, y el aminoácido que corresponde a cada codón se agrega a la cadena creciente de proteína.

Cada vez que un codón nuevo está expuesto:
  • Un ARNt correspondiente se une al codón 
  • La cadena de aminoácidos existente (polipéptido) se une al aminoácido del ARNt mediante una reacción química.
  •  El ARNm se desplaza un codón sobre el ribosoma, lo que exponde un nuevo codón para que se lea.


La elongación tiene tres etapas: 

1) El anticodón de un ARNt entrante se aparea con el codón expuesto del ARNm en el sitio A.

2) Se forma un enlace peptídico entre el nuevo aminoácido (en el sitio A) y el aminoácido que se añadió previamente (en el sitio P), y se transfiere el polipéptido del sitio P al sitio A.

3) El ribosoma avanza un codón en el ARNm. El ARNt en el sitio A (que lleva el polipétido) se despalaza hacia el sitio P. El ARNt en el sitio P se mueve hacia el sitio E y sale del ribosoma. 

Durante la elongación, los ARNt pasan por los sitios A, P, y E como se muestra arriba. Este proceso se repite muchas veces conforme se leen los nuevos codones y se agregan los nuevos aminoácidos a la cadena.

  • Finalizando el proceso: terminación
La terminación es la etapa donde la cadena polipeptídica completa es liberada. Comienza cuando un codón de terminación (UAG, UAA o UGA) entra al ribosoma, lo que dispara una serie de eventos que separa la cadena de su ARNt y le permite flotar hacia afuera.

Después de la terminación, es posible que el polipéptido todavía necesite tomar la forma tridimensional correcta, se someta a procesamiento (tal como el retiro de aminoácidos), sea enviado a la parte correcta en la célula, o se combine con otros polipéptidos antes de que pueda hacer su trabajo como una proteína funcional.



VÍDEO COMPLEMENTARIO



No hay comentarios.:

Publicar un comentario

FÍSICA GRADO 7º  LA CARGA  ELÉCTRICA La materia está constituida por unas partículas elementales llamadas...